Оглавление.
Возврат на страницу "МАТЕМАТИКА."

11. Определенный интеграл.

11.1. Определение.

11.1.1. Вычисление площади криволинейной трапеции. Пусть на отрезке [a,b] (b>a) задана непрерывная функция y = f(x) , принимающая на этом отрезке неотрицательные значения : при . Требуется определить площадь S криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху функцией y = f(x).
Для решения этой задачи разделим произвольным образом основание
AD фигуры точками x0 = a, x1 , x2 , …, xn-1 = a, xn = b на n частей [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 , xn]; символом будем обозначать длину i-го отрезка: . На каждом из отрезков [xi-1 , xi] выберем произвольную точку , найдём , вычислим произведение (это произведение равно площади прямоугольника Pi с основанием [xi-1 , xi] и высотой ) и просуммируем эти произведения по всем прямоугольникам. Полученную сумму обозначим S ступ: .
Sступ равно площади ступенчатой фигуры, образованной прямоугольниками Pi , i = 1,2,…,n; на левом рисунке эта площадь заштрихована. Sступ не равна искомой площади S, она только даёт некоторое приближение к S. Для того, чтобы улучшить это приближение, будем увеличивать количество n отрезков таким образом, чтобы максимальная длина этих отрезков стремилась к нулю (на рисунке ступенчатые фигуры изображены при n = 7 (слева) и при n = 14 (справа)). При разница между Sступ и S будет тоже стремиться к нулю, т.е.
.

11.1.2. Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков [xi-1 , xi] выберем произвольную точку и составим сумму .
Сумма
называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка [a,b] на части [xi-1 , xi], ни от выбора точек , то функция f(x) называется интегрируемой по отрезку [a,b], а этот предел называется определённым интегралом от функции f(x) по отрезку [a,b] и обозначается .
Функция f(x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования.
Кратко определение иногда записывают так:
.
В этом определении предполагается, что
b> a. Для других случаев примем, тоже по определению:
Если
b=a, то ; если b<a, то .

11.1.3. Теорема существования определённого интеграла. Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема по этому отрезку.
Примем это утверждение без доказательства, поясним только его смысл. Интегрируемость функции означает существование конечного предела последовательности интегральных сумм, т.е. такого числа
, что для любого найдётся такое число , что как только разбиение отрезка удовлетворяет неравенству , то, независимо от выбора точек выполняется неравенство. Требование непрерывности f(x) достаточно для интегрируемости, но не является необходимым. Интегрируемы функции, имеющие конечное или даже счётное число точек разрыва на [a,b] при условии их ограниченности (т.е. все точки разрыва должны быть точками разрыва первого рода). Неограниченная функция не может быть интегрируемой (идея доказательства этого утверждения: если f(x) неограничена на [a,b], то она неограничена на каком-либо [xi-1 , xi], т.е. на этом отрезке можно найти такую точку , что слагаемое , а следовательно, и вся интегральная сумма, будет больше любого наперед заданного числа).
11.1.4. Геометрический смысл определённого интеграла. Как следует из пункта 11.1.1, если f(x) >0 на отрезке [a,b], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x).

11.2. Свойства определённого интеграла.

1. Линейность. Если функции y = f(x), y = g(x) интегрируемы по отрезку [a,b] , то по этому отрезку интегрируема их линейная комбинация A f(x) + B g(x) (A, B = const), и
.
Док-во
: для любого разбиения отрезка и любого выбора точек выполняется . Перейдем в этом равенстве к пределу при . Так как существуют пределы интегральных сумм, стоящих в левой части равенства, то существует предел линейной комбинации этих сумм, следовательно, существует предел правой интегральной суммы, откуда следует истинность и утверждения, и равенства.
2. Аддитивность
. Если
y = f(x) интегрируема по отрезку [a,b] и точка c принадлежит этому отрезку, то .
Док-во
. Если f(x) удовлетворяет условиям интегрируемости по отрезку [a,b], то она удовлетворяет условиям интегрируемости по отрезкам [a,c] и [c,b]. Будем брать такие разбиения отрезка [a,b] , чтобы точка c являлась одним из узлов xi: c = xi0, . Тогда . В этом равенстве первая сумма справа - интегральная сумма для , вторая - для . Переходим к пределу при . Пределы для всех трёх сумм существуют, и .
Свойство аддитивности остаётся верным при любом расположении точек, если только функция интегрируема по самому широкому интервалу. Пусть, например,
c < b < a, и f(x) интегрируема по [c, a]. Тогда, по доказанному, . Отсюда и из определения интеграла для случая, когда нижний предел больше верхнего, следует, что .
При формулировании и доказательстве следующих свойств предполагаем, что
b > a
.
3. Интеграл от единичной функции (
f(x) = 1). Если f(x) = 1, то .
Док-во
. Если f(x) = 1 , то для любого разбиения
= xn - x0 = ba, т.е любая интегральная сумма равна длине отрезка. Предел постоянной равен этой постоянной, откуда и следует доказываемое утверждение.
4. Теорема об интегрировании неравенств
. Если в любой точке
выполняется неравенство , и функции f(x), g(x) интегрируемы по отрезку [a,b], то .
Док-во
. Для любого разбиения отрезка и любого выбора точек при . Переходя в этом неравенстве к пределу при , получаем требуемое неравенство.
5. Теоремы об оценке интеграла
.
5.1. Если на отрезке [a,b] функция удовлетворяет неравенству , то .
Док-во. Докажем левое неравенство (цифрами над знаками импликации обозначены номера применяемых ранее доказанных свойств): . Аналогично доказывается и правое неравенство.
5.2.
Если функция f(x) интегрируема по отрезку [a,b], то .
Док-во
. .
6. Теорема о среднем
. Если f(x) непрерывна на отрезке [a,b], то существует точка , такая что .
Док-во
. Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда . Число заключено между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка , такая что .
Это свойство имеет простую геометрическую интерпретацию: если
непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

11.3. Вычисление определённого интеграла.

Формула Ньютона-Лейбница.

11.3.1. Интеграл с переменным верхним пределом. Значение определённого интеграла не зависит от того, какой буквой обозначена переменная интегрирования: (чтобы убедиться в этом, достаточно выписать интегральные суммы, они совпадают). В этом разделе переменную интегрирования будем обозначать буквой t, а буквой x обозначим верхний предел интегрирования. Будем считать, что верхний предел интеграла может меняться, т.е. что x - переменная, в результате интеграл будет функцией Ф(x) своего верхнего предела: . Легко доказать, что если f(t) интегрируема, то Ф(x) непрерывна, но для нас важнее следующая фундаментальная теорема:
Теорема об интеграле с переменным верхним пределом. Если функция f(t) непрерывна в окрестности точки t = x, то в этой точке функция Ф(x) дифференцируема, и .
Другими словами, производная определённого интеграла от непрерывной функции по верхнему пределу равна значению подынтегральной функции в этом пределе.
Док-во
. Дадим верхнему пределу
x приращение . Тогда , где c - точка, лежащая между x и (существование такой точки утверждается теоремой о среднем; цифры над знаком равенства - номер применённого свойства определённого интеграла). . Устремим . При этом (c- точка, расположенная между x и ). Так как f(t) непрерывна в точке t = x, то . Следовательно, существует , и . Теорема доказана.

Отметим первое важное следствие этой теоремы. По существу, мы доказали, что любая непрерывная функция f(x) имеет первообразную, и эта первообразная определяется формулой . Другим важным следствием этой теоремы является формула Ньютона-Лейбница, или основная формула интегрального исчисления.

11.3.2. Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то .
Док-во. Мы установили, что функция - первообразная непрерывной f(x). Так как F(x) - тоже первообразная, то Ф(x) = F(x) + C. Положим в этом равенстве x = a. Так как , то . В равенстве переобозначим переменные: для переменной интегрирования t вернёмся к обозначению x , верхний предел x обозначим b. Окончательно, .
Разность в правой части формулы Ньютона-Лейбница обозначается специальным символом:
(здесь читается как "подстановка от a до b"), поэтому формулу Ньютона-Лейбница обычно записывают так: .
Пример применения формулы Ньютона-Лейбница:
.

11.3.3. Формула интегрирования по частям для определённого интеграла. Если u(x), v(x) - непрерывно дифференцируемые функции, то .
Док-во. Интегрируем равенство в пределах от a до b: . Функция в левом интеграле имеет первообразную uv, по формуле Ньютона-Лейбница , следовательно, , откуда и следует доказываемое равенство.
Пример:
.

11.3.4. Замена переменной в определённом интеграле. Теорема. Пусть функция

    1. определена, непрерывно дифференцируема и монотонна на отрезке ,
    2. ,
    3. функция непрерывна на отрезке [a, b].

Тогда .

Док-во. Пусть F(x) - первообразная для функции f(x), т.е. , тогда - первообразная для функции . , что и требовалось доказать.

При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла.
Пример:

.

 

 

Оглавление.
Возврат на страницу "МАТЕМАТИКА."